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Two models of one-dimensional fluids of associating hard rods in an arbitrary 
external field are investigated. In the first model particles can only form dimers, 
while in the second model, which has been solved previously by Percus, 
aggregates of any size coexist. In both cases the grand canonical potential and 
the external potential are found exactly as functionals of the density. It is shown 
that Wertheim's thermodynamic perturbation theory of polymerization provides 
a straightforward route to the exact solution by expanding the functional space 
to include more density parameters. This suggests that Wertheim's theory 
should be used also for studying the structure (and not only the thermo- 
dynamics) of real associating fluids. 

KEY WORDS: Solvable models; one-dimensional systems; density func- 
tional; chemical association. 

1, INTRODUCTION 

The simplest category of continuum models which are exactly solvable at 
thermal equilibrium is that of one-dimensional fluids with nearest-neighbor 
interaction, ca) Apart from their intrinsic interest, these exact solutions are 
very useful as guides for producing effective approximation methods in 
higher dimensionality. One such example is the classical hard-rod fluid in 
an external field, which was solved by Percus ~2) in 1976: the remarkable 
mathematical structure of the grand canonical potential has suggested 
several approximate expressions for the free energy functional of the 3D 
nonuniform hard-sphere fluid, (3-5) and the most recent recipe (6) has proven 
to be quite successful in describing packing effects at solid-fluid inter- 
faces.  (7) In this paper, we shall consider another simple model in which the 
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hard rods can stick together to form dimers, trimers, etc. We shall regard 
this as a model for an associating fluid with chemical bonding forces. In the 
last two decades the problem of the statistical mechanical description of 
chemical association in dense systems has been investigated in some detail 
through various approaches (see, e.g., ref. 8 and references therein). In 
general this is a more difficult problem than the description of simple 
monoatomic fluids (with van der Waals intermolecular interactions only) 
because bonding Boltzmann factors are huge and highly localized, making 
standard theoretical methods such as the Mayer p-expansion inefficient. 
Moreover, since bonding is usually due to highly directional forces, one has 
to introduce the geometry of the interaction and the steric hindrance effects 
at an early stage of the theory. To deal with these difficulties. Wertheim has 
proposed a comprehensive reformulation of statistical mechanics which is 
appropriate for the description of such associating fluids. (9) The molecular 
model is that of attractive site-site interactions, but sites do not replace 
molecules as primary units as in the interaction site model (ISM) of 
Chandler and Andersen. (1~ Instead, molecules are treated as different 
species according to the number of their sites which are bonded, and 
separate singlet densities are introduced for each possible bonding state of 
a molecule. This multidensity formalism has the advantage of showing 
many parallels to classical fluid theory, so that standard methods such as 
thermodynamic perturbation theory (TPT) or integral equations can be 
used. While Wertheim's theory has proven to be quite successful for 
describing the thermodynamics of homogeneous associating fluids, (lt-15) its 
status as a theory for nonuniform fluids has not yet been investigated. To 
begin with, we consider in the present work its application to one-dimen- 
sional systems. 

In Section 2 we first derive the exact free energy functional of the 
nonuniform fluid of dimerizing hard rods. Our method is based on the 
microscopic approach proposed recently by Olaussen and Stell (8) for 
describing chemical association of the type A + B ~ AB in uniform fluids. 
In Section 3 we apply Wertheim's TPT to the same system and show that, 
remarkably, perturbation theory at first order yields the exact result. As an 
application we compute the pair correlation function in the limit of the 
uniform fluid. In Section 4 we then revisit Percus' solution for the sticky 
hard-core fluid (1'16), using Wertheim's theory. The exact result is again 
rederived in a form which is more physically transparent, allowing some 
possible generalizations. Perspectives for treating nonuniform associating 
and molecular fluids in higher dimensions are discussed in Section 5. 
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2. D I M E R I Z l N G  HARD RODS IN AN EXTERNAL FIELD: 
THE C H E M I C A L  EQUIL IBRIUM V I E W P O I N T  

We consider a system of hard rods of diameter a with an internal 
degree of freedom (a "spin state" o-) specifying the orientation of the 
particle with respect to the x axis. Two rods can stick together to form a 
dimer when they are in contact, but only when their spins have opposite 
signs. The corresponding Boltzmann factor is 

exp[--flcko~,(x- x ' ) ] = ~ ( x - - x ' - - a ) +  2g)o, g)<+ 6(x--  x ' - a )  (2.1) 

for x > x ' .  Here e(x) and 6(x) are the step and Dirac delta functions, 
respectively, and 2 is the stickness parameter. (17) It is clear that only dimers 
can form in the fluid, unlike the case considered previously by Percus, (16~ 
where the rods can stick together whatever orientation they have. We 
assume there is also an external potential u(x, cr) acting on both the 
position and the orientation of the particles. 

2.1. Thermodynamics  

We first consider the thermodynamics of the uniform fluid 
[u(x, cr)= 0]. It is obtained easily by fixing the Nth particle at x = L and 
choosing periodic boundary conditions (i.e., the particle fixed at L 
reappears as the 0th, fixed at 0 with the same spin oo). The canonical 
ensemble expression is 

ZNL = ~ f ''" f exp[--flr exp[--flr ... 
o" i 

x exp[-flr , (L- -xN 1 ) ] d x l - . - d x s  1 (2.2) 

where the order L >1 xi+ 1 >~ xi has been imposed once and for all. Going to 
the isobaric ensemble and introducing the new variables Yl=Xl ,  Y2 = 
x2 - xl,..., YN = L- -  XN 1, we get straightaway 

fo QNe = ZNCe--ZPL dL = Tr K~ (2.3) 

where Ke is the two-by-two matrix defined by 

;o Ke(cr, 0') = exp[-f ir  exp(--flPy) dy (2.4) 

In the thermodynamic limit, the chemical potential # =  -(1/ /?N)in Tr Ke N 
becomes 

tip= - l n X m a x ( K e ) = f l P a + l n f l P - l n [ l  + ( l  + XflP)m] (2.5) 

822/68/5-6-24 
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and the particle density is 

1/p = dti#/dP = a + 1~tiP - (1/2) 2/[ 1 + 2tiP + (1 + 2tiP) '/2 ] (2.6) 

This expression can be inverted to yield the following equation of state: 

t iP= (1/2)(p/(1 - p a ) +  {[1 +22p/(1 - p a ) ]  ~/2- 1}/2) (2.7) 

On the other hand, at thermal equilibrium, the fluid is just a mixture of 
monomer and dimer hard rods of size a and 2a, respectively. Thus the 
pressure can be written also as 

t iP=(p ,  + p 2 ) / ( 1 - p l a - 2 p z a ) = ( 1 / 2 ) ( p + p l ) / ( 1 - p a  ) (2.8) 

where Pl and p 2 = ( p - p l ) / 2  are the densities of monomers and dimers. 
Identifying these two expressions, we readily find the density of free 
monomers 

p, = 2p / { l  + [ I  + 22p/(I - p a ) ]  '/2 } (2.9) 

and the constant of association K=p2/(pl /2)  2, 

K = 2/(1 - pa) (2.10) 

which generalizes the law of mass action to all densities in a very simple 
way. We notice that because of excluded-volume interactions, P l is not 
monotonic in p: it first increases, attains a maximum p la = [ 1 + (2/2a)~/2]/ 
[1 + 2(2/2a) 1/2] for pa = 1/[1 + 2(2/2a)m], and then decreases to 0 as pa 
reaches 1. On the other hand, the density of dimers P2 increases monotoni- 
cally with the particle density. 

It is interesting to rederive these results by the approach proposed 
recently by Olaussen and Stell, ~8) which merely is the translation of the 
general relations of chemical equilibria into statistical mechanical 
languageJ 18) The dimerization equilibrium corresponds to the association 
mechanism A + + A ~- A2 and we know from the second law of thermo- 
dynamics that as the reaction proceeds, the Helmoltz free energy will 
decrease until it reaches a minimum value consistent with the fixed amount 
of material. Then the idea is to calculate in the first place the free energy 
F ( N ~ , N 1 ,  N2) of the system, where the species A +, A - ,  and A 2 a r e  

regarded as independent. F(N~,  N { ,  N2) becomes the exact free energy at 
equilibrium provided that in the end we impose the conditions 

~+ = # l = U ~  and #2=2#1 (2.11) 
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where # i=  (c3F/c?Ni)r, uj. A possible difficulty in this approach is that the 
precise definition of the molecule A 2 may be ambiguous. Of course this is 
not the case in the present "sticky-spot" model and we can write at once 
the free energy density (per volume unit) of the monomer and dimer 
hard-rod mixture 

~ f (P  +, P 2 ,  P2)= ~ p~(~r){ ln[Ap~(a)  ] - 1} 
G 

+ p2[ l n (A 2p2 / 2 )  -- 1 ] -- (Pl + P2) ln(1 - p~a - 2p2a)  

(2.12) 

where A is the de Broglie thermal wavelength, p l =  p~- + p ~-, and 2 plays 
the role of a fugacity for the formation of pairs. The last term in (2.12) 
describes the correction to ideal mixing behavior arising from excluded- 
volume interactions. It is then trivial to recover from (2.11) and (2.12) 
the expression (2.10) of the constant of association at equilibrium. The 
corresponding minimum of the free energy is 

~ f  = p ln[  (Ap~/2  )/(1 - pa)  ] - (1/2)(p + pl) (2.13) 

2.2. Free Energy of the Nonuni form Fluid 

The preceding approach can be easily generalized to nonuniform 
situations to get the free energy functional of the associated fluid. Dimers 
have no spin, so that the local densities are related by the relations 

pz(X) = [ ( X  - -  a/2, + ) - p l ( x  -- a/2, + ) 

= p ( x  + a/2, -- ) - p t ( x  + a/2, -- ) (2.14) 

and the external field Uz(X) acting on a dimer satisfies 

u2(x)  = u (x  - a/2, + ) + u (x  + a/2, - ) (2.15) 

Then, taking advantage of the existence of an exact solution for hard-rod 
mixtures, c19) we can write at once the free energy density functional 

f l F [ P t ,  P2] = Z f Pl(  x ,  a ) { l n [ A p ~ ( x ,  r - 1 } d x  

+ f p2(x )  { ln[AZpz(x ) / )~]  - 1 } d x  

f n~,(x) ln[1 - n~(x)] d x  
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where n~(x) and n~(x) are surface and volume average densities 

n~(x) = (1/2) { ~  [pl(x + a/Z, rr) + p,(x  - a/2, rr)] 

+ Ep2(x + a) + p2(x - a) ]}  (2.17) 

Pl(Y, a ) d y + f  P2(Y) dy (2.18) I " l ' c (X ) :~  fx+a/2o x -- a/2 "xX+a-- a 

Using (2.14), n~(x) can be written also as 

G ( x ) : f x ~ + : f ; p ( y ) d y  (2.19) 

where 

p(x) = ~ p(x, rr) (2.20) 
~y 

and the external field contribution to flF [the last term in Eq. (2.16)] is 
just 

flFeXt = ~ f u(x, a) p(x, a) dx (2.21) 
ff 

The corresponding Euler-Lagrange equations are 

and 

flm(~r) = ~flF/~p d x ,  ,r) 

= ln[Ap,(x,  ~r)] - (1/2) In{ [1 - n~(x + a/2)] [1 - n ~ ( x -  a/2)] } 

f x + a/2 
+ ~ n , , (y) /[1--G(Y)]  dy 

+ flu(x, a) (2.22) 

flu2 = ~flF/~p2(x) 

= ln[A2p2(x)/2] -- (1/2) In{ [1 -- n~(x + a)]  [1 -- n~(x -  a)]  } 

+ n~(y)/[1 -- n~(y)] dy 
a 

+ flu2(x) (2.23) 
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From the equilibrium conditions (2.11) we get, after some simple 
manipulations, 

p 2 ( x ) / [ p x ( x - - a / 2 ,  + ) p l ( x + a / 2 , - - ) ] = ) ~ / [ 1 - - n ~ ( x ) ]  (2.24) 

which is the generalization of the law of mass action to nonuniform 
situations. Using (2.14), this equation can be further transformed to express 
p l (x ,  ~) in terms of p(x ,  a)  only. We finally get the pair of quadratic 
equations 

2p~(x,  + ) + p ~ ( x ,  + ) [ 1 - n ~ ( x + a / 2 ) - 2 p ( x ,  + ) + 2 p ( x + a , - ) ]  

- p (x ,  + )[1 - n~(x + a/2)] = 0 (2.25a) 

2pZ(x,  - ) + p~(x, - )[1 - n ~ ( x -  a/2) - 2p(x ,  - ) + 2 p ( x  - a, + )] 

- p (x ,  - )[1 - n~(x - a/2)] = 0 (2.25b) 

which are equivalent to a single quadratic equation for p2(x) ,  

2pZ(x) - pz(x)[1 - nT(x ) + 2 p ( x  - a/2, + ) + )~p(x + a/Z, - )] 

+ )~p(x - a/2, + ) p ( x  + a/2, - ) = 0 (2.26) 

This completes our determination of the functional. By solving (2.25) 
and (2.26) and replacing into (2.16), we can express the free energy as a 
functional of the local density p(x ,  cr) only. This total singlet density does 
not discriminate between the different bonding states of the particle. 
However, we see that the expression is much simpler if one stays with the 
variables p l (x ,  a)  and pz(x), which, moreover, have a well-defined physical 
interpretation. 

One can convinces oneself that this is actually the exact functional by 
deriving the free energy directly from the definition of the partition func- 
tion, using the method proposed by Percus for solving the fluid of sticky 
hard cores. (1'16) This calculation, which is more complicated, is shown in 
Appendix A. The complication comes from the fact that neither pl(X, 0") 
nor pz(x) appears as a natural variable in this method. This is in contrast 
with Wertheim's theory, which we now examine. 

3. A P P L I C A T I O N  OF W E R T H E I M ' S  T H E O R Y  

3.1. Free Energy Functional 

The main feature of Wertheim's theory is that it is a multidensity 
formalism(9): separate singlet densities are introduced for each possible 
bonding state of a molecule. This is the price to pay for carrying a fully 
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consistent reformulation of statistical mechanics in the presence of chemical 
bonding forces. When only dimers can form, there are only two such 
densities (Pl and P2), as introduced in the previous section. However, in 
Wertheim's formulation (H~ it is more convenient to choose p(x, 17) and 
p~(x, 17) as independent variables. Although Wertheim and subsequent 
authors(H ~5~ have considered uniform systems only, the original theory 
is formulated in such a way that it applies to nonuniform fluids, too. 
Actually, it provides an exact expression for the free energy functional of 
associated fluids. In the present case of dimerizing hard rods this expression 
has the form 

~F[p, Pl]  = ~ f {p(x, 17)ln[Apl(x, 17)] -p~ (x ,  17)} dx c (o) 

+ ~ y f u ( x ,  17)p(x, 17)dx (3.1) 
r 

where c (~ has an exact diagrammatic expression in terms of fR-bonds and 
F-bonds defined by the standard decomposition of the Mayer f-function 
into reference and attractive parts f = fR + F. Here we have 

fR(x, x') = e(Ix - x'[ - a) - 1 
(3.2) 

F~,~,(x-x ')=26~_ @ , + 6 ( x - x ' - a )  for x > x '  

and c (~ is the sum of all irreducible graphs on field (integrated) points with 
fR-bonds and F-bonds. There is at most one F-bond incident per point. 
Points with only fR-bonds incident are called monomer points and carry a 
factor p(x, 17). The other points are called dimer points and carry a factor 
p~(x, 17). 

At equilibrium, Wertheim (9) shows that the grand potential 
f2 = F - #  ~ p(x)dx  is stationary with respect to the variations of p and Pl, 
so that we have the two Euler-Lagrange equations 

ln[Apl(x, 17)] = Co(X, 17) + fl[~ - u(x, 17)] (3.3a) 

p(X ,  17) /p l (X,  17) - -  1 = C l ( X  , 17) ( 3 . 3 b )  

where Co and c~ are the functional derivatives 

Co(X, a) = 6c(~ 17) (3.4a) 

Cl(X , 17)= (~c(O)/(~pl(X , 17) (3.4b) 

Equation (3.3b) is the generalization of the law of mass action [cf. 
Eq. (2.24)]. 

The graphs in c (~ can be ordered by ascending number of F-bonds. 
The sum c~ ) of graphs devoid of attraction bonds is just the excess con- 
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tribution (multiplied by - 1 / k T )  to the internal (or intrinsic) Helmholtz 
free energy F~ nt of the reference hard-rod fluid. This quantity is a functional 
of p(x)= Zo p(x, a) only, which we know exactly from Pereus, (2) 

= (1/2) f [p(x + a/2) + p(x - a/2)] c(OR ) ln[1 n~(x)] dx 

= f p(x) ln[- 1 - n~(x + a/2)] dx (3.5) 

tin going from the first to the second line of (3.5) it has been assumed that 
p(x )~O when x ~  _+~]. 

To first order in F we have (9) 

c~ ) + (1/2) ~ f pl(xl, al) gR(xl, x2) r0"l~2(xl, c(O) ~ X2) 
0"1 O"2 

x p~(x2, ~2) dx~ dx2 + ... (3.6) 

where gR(x, y) is the pair distribution function in the reference nonuniform 
hard-rod fluid EgR(x, Y) is a functional of p(x), too]. Higher-order terms 
introduce n-body distribution functions of the reference system with n > 2, 
and this is why Wertheim's perturbation theory is usually truncated at first 
order (TPT1). In the present model, using (3.2), this gives 

Alc~~176 f pl(x, + ) g R ( x , x + a ) p l ( x + a , - - ) d x  (3.7) 

where 
gR(x, x + a) = 1/[1 - n~(x + a/2)] (3.8) 

as can be found from Percus' solution for the nonuniform hard-rod 
fluid. C16) Then (3.3b) yields the two coupled equations 

p(x, + ) = p l ( x ,  +)+2p~(x, + ) p ~ ( x + a , - ) / [ 1 - n ~ ( x + a / 2 ) ]  

p ( x ,  - -  ) = p l ( X ,  - -  ) + ~ p l ( x ,  - -  ) p l ( X  - -  a ,  + )/E 1 - n~(x - a/2)] 

(3.9a) 

(3.9b) 

Using (2.14), we readily see that this is just another way of writing the 
exact generalized "law of mass action" given by Eq. (2.24). Then, replacing 
in Eq. (3.1) to eliminate pl(x, a) and comparing to the direct solution as 
shown in Appendix A, we find that the free energy functional F[p, Pl(P)] 
in TPT1 can be identified with the exact one. Finally, after some manipula- 
tions, we get at equilibrium the very simple result 

fig2 = ~ dx [p2(x) - p(x - a/2)]/[1 - n~(x)] (3.10) 
J 

with p2(x) the solution of (2.26). 
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Therefore, remarkably, Wertheim's TPT1 yields the exact solution for 
the nonuniform dimerizing fluid. As already noted, we see that it is much 
more convenient to express the free energy F in the extended functional 
space where p and pj vary independently and to specify Pl (and then P2) 
at the end by the extremal condition 6F/6pl = O. 

The reason why the first-order TPT becomes exact in one dimension 
is not immediately apparent from the diagrammatic definition of c (~ The 
second-order term contains two F-bonds and we have explicitly verified the 
exact cancellation of the three diagrams containing only four field points. (9) 
Clearly, such cancellation must occur to all orders and is most likely 
related to the shielding of n-body correlations due to the linear ordering of 
the particles in one-dimensional systems. 

Within this formalism, it is interesting to consider the limit 2--, o% 
which corresponds to the limit of complete dimerization. In the uniform 
fluid we have Pl --* 0 and Eq. (2.8) yields the pressure of a fluid of hard rods 
of size 2a with particle density P2 = (1/2)p, as expected. More generally, if 
the external field does not hinder the dimerization process, we have 

p(x,  + ) ~  p (x  + a, - ) ~ pz(x  + a/2) (3.11a) 

p(x, - ) ~ p ( x  - a, + ) --* p2(x - a/2) (3.1 lb) 

Assuming the stronger conditions 2[p(x, + ) - p ( x + a , - ) ] ~ O  and 
2 [ p ( x , - ) - p ( x - a ,  + ) ]  ~ 0  (for a given external field this should be 
verified explicitly by solving the corresponding Euler-Lagrange equation), 
the equilibrium relations (2.25) yield 

] p2(x, q-)~,~, lp(x,-}-) 1-- p(y) dy (3.12a) 

O ~ ( x , - ) ~ 2 - 1 p ( x ,  - ) 1 -  a p ( y ) d y  (3.12b) 

Replacing in the expression (3.1) of the functional, we get 

~F[o]  = - c ~  ) + (1 /2 )2  f {p(x, ~)ln[A2p(x, e)]  -O(x,  ~)} dx 
o- 

+o j 
+ (1/2) fp(x ,  + ) l n  1-- p(y )  dy dx 

+ ( I / 2 ) f p ( x , - ) I n [ l - f f _ o p ( y ) d y ] d x  

- (N/2)  In 2 + B ~ f u(x, cr) p(x, ~) dx + 0 ( 2 - ' )  
G 

(3.13) 
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where N = ~ p ( x ) d x .  Using relations (2.15), (3.5), and (3.11), we finally 
obtain 

f pz(x){ln[A2p2(x)] - 1 } dx ~F[p] 

-(I/2) fp=(x){In[l-ff 2 p(y)dy ] 

- ( N / 2 ) l n 2 + f l f u z ( x ) p 2 ( x ) d x + o ( 2  1) 

= f l F 2 [ p 2 ] - ( N / Z ) l n 2  +o(2 i) (3.14) 

where F2[P2] is the free energy functional for hard rods of size 2a. The 
term (N/2) In 2 corresponds to the (infinite) energy of dimerization and can 
be discarded once the association process is completed. Therefore we 
see that the free energy functional of the nonuniform dimer fluid can be 
easily obtained in Wertheim's formalism by taking the limit of complete 
association. 

3.2. Pair Correlat ion Function in the Uni form Fluid 

A great advantage of Wertheim's theory is that the whole machinery 
of integral equations can be transplanted to the multidensity formalism. In 
particular, one can introduce analogs of the n-particle direct correlation 
functions and relate them to the truncated n-particle distribution functions 
via an Ornstein-Zernike (OZ) equation. In the case of a dimerizing fluid 
and for n = 2, we have the matrix equation (1~) 

1 1 

hij(1, 2) =--cij(1, 2) + ~ ~ f cik(1, 3) Ok1(3) hlj(3, 2) d(3) (3.15) 
k ~ O  1 = 0  

where the matrix Po has elements 

Poo=P, POl = Plo = Pl, P~I = 0  (3.16) 

c o . is defined by the functional differentiations 

Coo(l, 2) = c52c(~ 6p(2) 

Co1(1, 2) = 62c~~ ) 6p1(2) 
(3.17) 

C10(1 , 2) = 6%(0)/6p~(1) 6p(2) 

ell(l ,  2) = 6%(0)/6p~(1) 6p~(2) 
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Note that there is no simple relation between these c o. and the ordinary 
direct correlation function c(1, 2). The h o. come from the splitting of the 
truncated pair distribution function pr(1, 2) into four terms according to 
the factors p or Pl at the labeled points, 

pT(1, 2) = p(1) hoo(1, 2) p(2) + p(1) hol(1, 2) p1(2) 

+ pl (1)hm(1 ,2)p(Z)+p~(1)h l~(1 ,2)p l (2)  (3.18) 

Therefore this formalism also gives a systematic and rather simple way of 
computing the pair correlation function of an associating fluid from its free 
energy functional. As an illustration, in Appendix B, we compute this 
function for the uniform fluid of dimerizing hard rods. From Eq. (B10) we 
see that the result for the structure factor S(k) = 1 + ph(k) takes the simple 
analytic form 

S(k) = [1 + (1 -p~ /p )  cos ka]/D(k) (3.19) 

where D(k) is given by (Bll) .  
When 2 = 0 (no association) we have pl = p, and we recover the struc- 

ture factor for hard rods of size a, as it should be. On the other hand, in 
the complete-association limit considered before where Pl = 0, we see from 
(B10) that ph(k) can be written as 

ph(k) = [(p/Z) c2(k ) -I- COS ka]/[1 - (p/2) c2(k)] (3.20) 

where c2(k) is just the pair direct correlation function for hard rods of size 
2a. (16) This can be further transformed to yield 

oh(k) = cos ka + phS2S(k) (3.21) 

where 

h~S(k) = (1/2)(1 + cos ka) h2(k) (3.22) 

or, in real space, 

ph(x) = (1/2)[6(x + a) + 6(x - a)] 

+ (p/2)Ehz(x) + (1/2) h2(x + a) + (1/2) h z ( x -  a)] (3.23) 

where h 2 is the pair correlation function for hard rods of size 2a. Therefore, 
in this simple model, we verify that in the limit of complete association 
the pair correlation function of the dimerizing fluid breaks into an 
intramolecular part l-the first term in Eq. (3.23)] and an intermolecular part 
which is identified with the site-site total correlation function h~ S of the 
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dimer fluid. This simple relation between the particle-particle correlation 
function of an associating fluid and the site-site correlation function of the 
ISM formalism of Chandler and Andersen (~~ has been already discussed in 
the literature. (2~ 

Finally, we wish to indicate a new form of the compressibility theorem 
for a dimerizing fluid which is not given explicitly in Wertheim's original 
papers. In the uniform system the expression for the grand potential iS (9) 

in S =  f p1(1) d ( 1 ) - f  p(1) Co(1 ) d(1)+ c (~ 

= f  p (1 )d (1 ) - f  p(1)Co(1)d(1)-f  pl(1)c,(1)d(l)+c(~ (3.24) 

where Co(1 ) and c1(1 ) are defined by Eq. (3.4) and satisfy the equilibrium 
relations (3.3). We now take a variation of (3.24). We obtain 

6(ln •)= f 6p(1) d (1 ) -  f p (1)6%(1)d(1) -  f p1(1)6c~(1) d(1) (3.25) 

with 

6Co(1) = f Coo(l, 2) @(2) d(2) + f col(l, 2) 6p1(2) d(2) (3.26a) 

6Cl(1)=fC~o(1,2)6p(2)d(2)+fcH(1,2)6p~(2)d(2 ) (3.26b) 

so that 

a ( ~ P )  = at) - p[eoo(k  = O) ap + eo , (k  = O) a p , ]  

- p ~ [ ~ o ( k  = 0 )  6p + {~(k = 0 )  6p,] (3.27) 

o r  

c3(flP)/ap = 1 -- Pfoo(k = 0) - PI clo( k = 0) 

-- Op~/ap [pfo,(k = 0) + Pla~(k = 0)] (3.28) 

Similarly, the derivative Opl/Op can be obtained by taking a variation of 
the equilibrium relation (3.3b). We find 

~?pl/~?p = [1 -p,?ao(k=O)]/[p/pl + p1711(k= 0)3 (3.29) 
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The final result is 

O(flP)/Op = [1 - Pl glO( k - - - -  0)] [-1 -- Pl go~( k = 0)3/[1 + (p~/p) Cll(k - - - -  0)] 

-- Pgoo(k = 0) (3.30) 

which is the required compressibility theorem. Using the expressions (B7) 
for gij(k), it is straightforward to verify that the compressibility of the 
dimerizing hard-rod fluid obtained from (3.30) is in agreement with the 
derivative of Eq. (2.8). Incidentally, we remark from (3.29) that Pl attains 
an extremum as a function of p when [ 1 - p ~ g l o ( k = 0 ) ] - - - 0 .  As noted 
before, this extremum is a maximum. 

4. THE N O N U N I F O R M  STICKY H A R D - R O D  FLUID REVISITED 

The sticky-core fluid is defined by the Boltzmann factor 

exp[- f l (J(x-x ' )]  = e ( x - x ' - a ) + 2 6 ( x - x ' - a )  (4.1) 

for x > x'. This is the simplest model of an associating fluid where clusters 
of any size can coexist at equilibrium. The calculations of the preceding 
sections suggest that Percus solution for the nonuniform fluid (1"16) should 
be now revisited, using either the viewpoint of chemical equilibrium or 
Wertheim's formalism. Our aim is to transform the free energy functional 
into a more symmetrical form by enlarging the functional space and 
treating the densities of monomers, dimers, trimers, etc. as independent 
variables. We first recall the results for the uniform fluid, which can be 
derived straightforwardly. 

4.1. Thermodynamics  of Sel f -Associat ion 

Let us take the multiple chemical equilibria approach (cf. Section 2.1). 
Treating all aggregates as independent particles, we can write at once the 
free energy density 

f l f ({p ,})=  p,[ln(A"p,/2" 1 ) - 1 ] -  p,  In 1 - a ~ n p ,  (4.2) 
1 1 

where p,  is the density of n-mers. This is to be completed by the 
equilibrium relations 

#1 = (1/2) #2 = (1/3) #3 . . . .  ( l /n) #,  (4.3) 
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and the conservation equation relating the total density p as 

p - npn (4.4) 
1 

It is then easy to calculate the n-mer density as a function of the free 
monomer  density 

p ,  = [2"-1/(1 - p a )  n-x]  p~ (4.5) 

By replacing in (4.4), a simple calculation yields 

p = p~/[1 - 2pl/(1 - pa) ]  2 (4.6) 

o r  

pl = [1/(2p22)](1 - pa) 2 {1 + 22p/(1 - pa) - [1 + 42p/(1 - pa)]  m } (4.7) 

We can also calculate the mass average cluster size at equilibrium defined 
by 

S =  n2p~ npn (4.8) 
1 

After some algebra we find the simple result 

S = [1 + 42p/(l  - pa)]  1/2 (4.9) 

Of course, all of this is quite similar to the well-known results on rodlike 
aggregates such as cylindrical micelles or linear chains of molecules (see, 
e.g., w of ref. 21). What  is interesting in the one-dimensional model is that 
we have an exact evaluation of the influence of excluded-volume inter- 
actions on the thermodynamics of self-association. Again we find that the 
monomer  density Pl has a maximum as a function of p, while the densities 
of n-mers are monotonically increasing (however, the fraction Pn/P goes 
through a maximum which does not occur at the same density for each 
cluster size). We also see from (4.9) that the mean cluster size is enhanced 
by purely repulsive interaggregate interactions (compare to the situation 
when a = 0), as already noted in the literature/22) 

Finally, let us give the expression for the free energy at the minimum 

f l f  = p l n [ A p l / ( 1 - - p a ) ] - p l / [ 1 - 2 p l / ( 1 - p a ) ]  (4.10) 

where Pl is given by (4.7). 
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4.2. Free Energy of the Nonuniform Fluid 

Although the preceding approach can be extended to nonuniform 
situations, it is more instructive for future applications to proceed with 
Wertheim's theory. It is then convenient to generalize the Boltzmann factor 
(4.!) and to introduce the possibility that the two sites A and B at the 
edges of the core have different bonding energy. The new Boltzmann factor 
is 

exp [ - / ~ b ~ , ( x -  x ' ) ]  

-- e ( x  - x '  - a)  + 6 ( x  - x' - a) [6~, + (2AA 6~,,_ + 2AB~'  + ) 

+ 6~,_(2SS6~, + + J'SAgo',--)] (4.11) 

for x > x' (with 2AB = ) 'BA)-  

In the presence of such attraction sites, Wertheim's expression for the 
intrinsic Helmholtz free energy becomes a functional of four singlet 
densities, namely (keeping Wertheim's notations (12)) 

f l F i n t [ a  r ,  ~7o, a A ,  o"B] 

= Y', f { ~ r ( 1 ) l n [ A a o ( 1 ) ]  - aA(1) - ~B(1) 
~r 

+ aA(1) crA(1)/~o(1)} d ( 1 ) -  c (~ (4.12) 

where 1 = (x, a); ~ r  = p and ao = pl are the total density and the density of 
free monomers, respectively; and ~A (resp. aB) is the density of particles 
with site B (resp. A )  no t  bonded, c (~ is an infinite sum of graphs with 
fR-bonds and F-bonds which are defined here as 

f R ( x ,  x ' )  = e ( l x  - x ' l  - a)  - 1 

F~o, ,AA(X--  X ' ) = 2 A A 6 ~ , +  ~ , ,  6 ( x - -  x ' - - a )  

Fr -- x ' )  = 2~86o ,_  6~, + 6 ( x - -  x '  -- a)  (4.13) 

F ~ , , A s ( X  -- X') = 2A~6~,+ 6~, + 6(X -- X' --  a)  

F ~ , , B A ( X  - -  X ' )  = 2 A B 6 ~ _  O,T, ' - 6 ( X  - -  X '  - -  a)  

for x > x ' .  

c (~ is the sum of all irreducible graphs on field points with fR-bonds 
and F-bonds. Each site is bonded at most once. A point i carries a factor 
~Q(i), where Q is the complement of the set of bonded sites at i. Again we 
can condense the graphs in A e  ~~ = c ~~ - c ~  ) by means of a reference system 
correlation function g , ( x ~ ,  x 2 . . . x , )  so that only points with incident 
attraction bonds are left. 
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At equilibrium F int-  F~ nt is stationary with respect to the variations of 
o-0, o- A, and aB. By functional differentiation this gives the three equations 

~rr(1)/Cro(1 ) - ~rA(1 ) ~r~(1)/a~(1) = 6Ac(m/6~o(1 ) (4.14) 

aA(1)/ao(1 ) -- 1 = 3Ac(~ (4.15) 

and similarly with A and B interchanged. 
In one dimension, the single-bonding condition for sites in Ac ~~ 

restricts the allowed structures composed of points connected by F-bonds 
to be only chains (rings are not possible). On the other hand, graphs may 
contain any number of chains compatible with the available number of 
points. The simplest approximation suggested by Wertheim (12) consists in 
retaining only the graphs where all points are connected by attraction 
bonds, i.e., graphs containing a single chain. As in the case of the 
dimerizing fluid, we have explicitly verified the exact cancellation of the 
graphs containing two chains and four field points. We believe that such 
cancellation occurs at all orders and for any number of chains. 

Now, the graphs in Ae ~~ containing a single chain can be ordered by 
ascending number of F-bonds. The lowest-order term (TPT1) is 

A1 c(0)= (1/2) Z ; gR(xl, X2){~A(1)[FBM(I' 2) O'A(2)+ F~A(1, 2) ~B(2)]  
o- 10" 2 

+ aB(1)[FAA(1,2)aB(2)+FAB(1,2)aa(2)]}d(1)d(2) (4.16) 

The second-order TPT retains a chain of attraction bonds on the three 
points. One such term, with, for instance, one FAa-bond and one FsA-bond 
is expressed as 

2 
O- 10" 2 0" 3 

where 

f aB(1 ) ,70(2 ) 0-8(3 ) Faa(1, 2) F,~A(2, 3) GR(1, 2, 3) d(1) d(2) d(3) 

(4.17) 

GR(1, 2, 3) = gR(xl, x2, x3)--gR(xl ,  x2)gR(x2, x3) (4.18) 

Since the particles 1, 2, 3 are bonded, we have the linear ordering 1, 2, 3 
or 3, 2, 1 in one dimension. This implies GR(1, 2, 3) = 0, as already noted 
by Wertheim/12) More generally, the graphs containing a single chain on 
n points cancel, because the combination GR(1, 2- . . n )  of n-particle dis- 
tribution functions of the reference hard-rod fluid cancel in the bonded 
configurations [the general characterization of GR(1, 2---n)  is given in 
ref. 12]. 
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Therefore we conjecture that Wertheim's TPT1 is an e x a c t  theory for 
the one-dimensional fluid of sticky cores, as it was also for the dimerizing 
fluid. Thus Eqs. (4.12) and (4.16) must become equivalent to Percus' 
solution r in the degenerate case where ~AA = 2BB = *~AB" As we shall see 
below, this is one of the three cases where a closed form for the free energy 
density functional can be obtained. 

Consider the chemical equilibrium relations (4.14) and (4.15). A ~ c  (~ 

does not depend on ao, so that (4.14) yields 

p(x, ~) ao(X, ~) = ~ A(x, ~) o ~(x, ~) (4.19) 

which can be used to eliminate ao in the left-hand side of (4.15). From the 
functional differentiation of A l e  (~ with respect to aA and aB we obtain 

p ( x ,  + ) = a A ( x ,  + ){ 1 + g R ( x ,  x + a)[2BSCrA(X + a, -- ) + 2aBaB(X + a, + )3 } 

p ( x ,  --  ) = CrA(X, --  ){ 1 § gR(X,  X -- a ) [ 2 8 8 a A ( x  -- a, + ) + 2 A S ~ s ( X  -- a, -- )] } 

p ( x ,  + ) = aB(x ,  + ){ 1 + gR(x ,  x - -  a)[)~A,~ a B ( X - -  a, --  ) + 2 A B a A ( X - -  a, + )3 } 

p ( x ,  -- ) = a ~ ( x ,  -- ){ i + g R ( x ,  x + a)[2Aa a n ( x  + a, + ) + 2 A B a A ( X  + a, -- )3 } 

(4.20) 

where g R ( x ,  x +_ a)  is given by Eq. (3.8). Note also that from the definitions 
of p, aA, and crB we have the identity 

p ( x )  - a A ( x ,  + ) - a s ( x ,  - ) = p ( x  + a)  - a A ( x  + a, - ) - crs(x  + a, + ) 

(4.21) 

(4.20) is a system of four coupled nonlinear equations which, unfor- 
tunately, cannot be solved explicitly in the general case to express a,~ and 
aB as functionals of p. However, when 2AB = 0, the system decouples into 
two sets of quadratic equations similar to Eqs. (3.9), which can be solved 
in a closed form like (2.25). The general solution for 2ABe0 can only be 
obtained perturbatively by expanding in powers of 2A~ [this shows, 
moreover, that the solution to (4.20) exists and is unique]. There are two 
other exceptions: (i) 2aa = 2ss = 0 and (ii) "~AA = '~BB = '~AB = )~' In this last 
case we have by symmetry 

and 

p ( x ,  + ) = p ( x ,  - ) :-- (1/2) p ( x )  

~rA(x, + ) = ~rB(x, - ) : =  ( 1 / 2 )  a(x, + ) 

~ A ( x ,  - ) --- ~ B ( x ,  + ) : =  ( 1 / 2 )  a ( x ,  - -  ) 

(4.22) 

(4.23a) 

(4.23b) 
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and (4.20) becomes 

p ( x ) = a ( x ,  + ) [ 1  + 2a(x  +a,  - ) g R ( x ,  x + a ) ]  

= a(x,  - )[1 + 2a(x  - a, + ) gR(x, x - a)]  (4.24) 

The solution is 

a(x,  +_ ) = - 1 / [ 2 2 g R ( x ,  x _+ a)]((1 + 2gR(X, X +_ a ) [ p ( x  + a) -- p(x)]  

-- { 1 + 22g~(x, x _+ a ) [ p ( x  +_ a) -- p(x)]  2 

+ 2)~gR(x, x +_ a ) [ p ( x  +_ a) + p(x)]  } 1/2) (4.25) 

It can be used to determine the intrinsic free energy functional, which can 
be rewritten, after some manipulations using (4.12), (4.16), (4.19), and 
(4.21), as 

flF int= --C~ ) -+- f {p(x) ln[(A/2) a(x,  + ) a(x, - ) /p(x)  ] - a(x,  + )} dx 

(4.26) 

with c f  ) given by (3.5). To see that this expression is indeed identical with 
Percus' solution, (~'16) we introduce the intermediate function Q(x)  defined 
as  

22Q(x)  = ({1 + 2 [ p ( x )  - p ( x -  a) ] / [1  - n ~ ( x -  a/2)] }2 

+ 4).p(x - a)/[1 -- n~(x -- a/2)])  m 

-- {1 + 2 [ p ( x ) - - p ( x - - a ) ] / [ 1 - - n , ( x - - a / 2 ) ] }  

Then (4.24) can be transformed into 

a(x,  + ) =  [ 1 - n ~ ( x + a / 2 ) ]  Q ( x + a )  

a(x, - ) = p (x ) / [1  + 2Q(x)] 

and replacing in (4.25) yields 

(4.27) 

(4.28a) 

(4.28b) 

f l F  i n t =  - [ 1 - n ~ ( x ) ]  Q(x+a/2)dx 

+ p(x )  ln{(A/2) Q ( x + a ) / [ 1  + 2 Q ( x ) ] }  dx (4.29) 

which is the result obtained by Percus [ Q ( x ) =  1 / ( 2 2 ) R ( x - a / 2 )  in his 
notations(l)], with an extra factor - N l n  2 coming from the fact that the 

822/68/5-6-25 
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sites A and B were initially distinguishable. Finally, the grand potential at 
the minimum is 

fit-2 = - ~ Q(x)  dx 
d 

= -(1/2)  f [a(x  + a/2, - ) + a(x  - a/2, + )]/[1 - n,(x)] dx 

= --(1/2) f a (x) / [1  - n ~ ( x ) ]  dx (4.30) 

where we have used (4.21) and introduced the local density 

a(x)  = a(x  + a/2, - ) + a(x  - a/2, + ) (4.31) 

a(x)  has an obvious interpretation: it is the density of polymers (including 
monomers) which have a free (unbounded) end at x. In the uniform fluid 
a/2 = Z ~  Pn is simply the average density of polymers and v = 2p/a is the 
mean number of beads per chain ~12) (not to be confused with the mean 
cluster size S defined by (4.8), which is the second moment of the cluster 
size distribution(23~). From (4.25) we find 

v = (1/2){1 + [1 + 42p/(1 - p a ) ] ' / e }  (4.32) 

so that, in this model, 

v = (1/2)(1 + S) (4.33) 

Note that (4.30) remains valid when the sites A and B are different, with 

a(x)  = aA(x - a/2, + ) + a~(x - a/2, - ) 

q- a A ( X - l - a / 2  , - ) + a B ( x  +a/2,  + )  (4.34) 

The very simple form (4.30) generalizes the preceding results for the pure 
hard-core fluid (t6) and for the dimerizing fluid [cf. Eq. (3.10)]. It may also 
suggest some effective approximation schemes for real associating fluids. 
Once again we note that the underlying symmetries of the density 
functional become apparent when the functional space is enlarged to 
incorporate additional singlet densities such as ao, aA, and aB: this is the 
great virtue of Wertheim's formalism. 

5. C O N C L U S I O N  

Although restricted to one-dimensional models, the preceding calcula- 
tions illustrate the efficiency and the simplicity of Wertheim's theory for 
associating fluids. In particular, we have seen that first-order perturbation 
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theory provides a very simple expression for the free energy functional, 
which becomes exact in one-dimensional systems because of linear order- 
ing. The fact that Wertheim's theory may be applied to inhomogeneous 
systems seems to have been neglected until now (an exception is ref. 24), so 
that all applications of the theory to the description of real fluids have been 
concerned with the thermodynamics of uniform systems. Then, agreement 
between theory and simulation is excellent. (1~-15) The extent to which such 
a good agreement will be preserved in inhomogeneous situations remains 
to be studied. There will be some interesting problems to investigate; for 
instance, the structure of a polymerizing fluid in the vicinity of a solid sur- 
face. The knowledge of a free energy functional also permits the calculation 
of the correlation functions in the uniform fluid, as shown in Section 3.2. In 
particular, by considering the limit of complete association, we can build 
polyatomic molecules composed of tangent hard spheres (dimers, trimers, 
or even longer chains) and get information on the intermolecular structure. 
This procedure may be a possible alternative to the ISM approach of 
Chandler and Andersen. I1~ We intend to report on these issues in the near 
future. In any case, we will have to introduce additional assumptions for 
the free energy and the pair correlations of the nonuniform reference fluid 
where bonding forces are absent. We shall take advantage of the existence 
of a good approximate expression for the density functional of hard-sphere 
fluid mixtures, (6) from which all thermodynamic and structural properties 
of the nonuniform fluid can be calculated, at least in principle. 

APPENDIX  A 

In this Appendix, we derive the free energy of the nonuniform 
dimerizing hard-rod fluid directly from the partition function, using Percus' 
technique. (1'16) The calculation is very similar to that of Percus, except that 
we have to consider two by two matrices because of spin variables. 

It is again convenient to fix a particle at x = L with an orientation a/~ 
so that we start from the expression 

ZN(L,  aL)= 2 f "'" f exp[-/~boL~u(xL-- XN)] exp[--f lU(XN, aN)] 
O- i 

• exp[ --fl(~ON,,N_I(XN -- X N_ 1)] expl- - - f lu(xN_ 1, aN--1)] ' ' "  

• exp[--f~b~zal(x2--Xl) ] e x p [ - - f l U ( X l ,  o-1) ] dx 1 . . . d x  N (A1) 

where the ordering L/> xi+l~> xi has been imposed. Following Percus, we 
rewrite (A1) as f+oo 

z~ (L ,  ~i~) = 2 (eW) N (L, G~ I x, ~) & (A2) 
o~ = c c  
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where we have introduced the matrix 

e(x, a lx', a ' )=exp[-~O~,(x-  x')] e (x -  x') (A3) 

and the diagonal matrix 

W(x, a lx', a')=exp[-Bu(x, ~)] 6~,o,6(x-x') (A4) 

We then construct the particle-terminated grand partition function 

~(L, a D - - ~  (I--ew)-I(L, GLlx, G) dx (A5) 
- - o o  

where I is the identity operator and w is the diagonal operator defined by 

w(x, a) = exp{/~[# - u(x, a)] } (16) 

Taking the limit L--* + Go and using the fact that the interactions have a 
finite range, we find for the total grand partition function Z r =  ~(oe, aL), 

3 r = l +  ~ [w(I-ew) 1](x ' ,a ' lx ,~)dxdx'  (A7) 
~7 ,~ '  - - o O  - - o O  

The density profile is given as 

p(x, a) = - 6  In 2r/6~u(x, a) (A8) 

and since the definition of the operator e implies (1'16) 

e l l = e *  11=0 (A9) 

[1 is the function defined by l(x, a ) =  1 and e* is the adjoint of e] we 
obtain after some manipulations 

p(x, a)/~(x, a)= e*-l[p(x, a)/e x(~(x, a))] (A10) 

which is the basic relation for solving the inverse problem, i.e., determine 
w and 3 r  as functionals of p(x, a). Equation (A10) must be completed by 
the boundary condition 

~ ( x , a ) - l ~ ( e p ) ( x , e )  as x--* -oe  (All)  

To get the explicit solution, it is convenient to introduce the operators O 
and eo defined by 

O(x,~[x ' ,a ' )=6(x-x ' )+26~,_6~,+6'(x-x ' )  (A12) 

Co(X, ~ Ix', a ' )=~(x-  x ' - a )  6~,~, (A13) 
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where 6'(x)  is the derivative of ~(x). Applying O* to (AI0) and noticing 
that e = O eo, we find the coupled equations 

p(x,  + ) /A(x)  + (1 -- 2c5~,+ O/~x){p(x,  -- ) / [ A ( x )  + ,;~A'(x, + 1] } 

= -~/~?x [ p ( x - a ,  a ) /A ' (x ,  a)] (A14) 

where A is the modified partition function defined by A = O - t Z  and 

A ( x ) = A ( x ,  + ) + A ( x , - )  (A15) 

Rewriting (A5) as ~ = ( I - e w )  -1 1, we also get the following equation 
for w: 

w(x, a) = A ' ( x  + a, a ) / [ A ( x )  + 26~,,_ A ' (x ,  + )] (A16) 

(A14) is a set of two nonlinear second-order differential equations in A, 
which, remarkably, can be solved. Using (All)  and after some manipula- 
tions, we find 

p(x  - a, + ) A(x ,  + ) /A'(x ,  + ) + p (x  - a, - ) A(x ,  - ) /A'(x ,  - ) 

- 2 A ( x ;  + ) p ( x ,  - ) / [ A ( x ) + 2 A ' ( x ,  + ) ] = l - n ~ ( x - a / 2 )  (A17a) 

p(x  - a, + ) /A'(x ,  + ) - p (x  - a, - ) /A'(x ,  - ) 

- 2p(x,  - ) / [ A ( x )  + 2A' (x ,  + )] = 0 (A17b) 

where n~(x) is defined by Eq. (2.19). 
We now observe that all the desired quantities can be expressed as 

functionals of the quantity 

Q(x,  ~ ) =  A ' (x ,  a ) /A (x )  (A18) 

For the grand potential at equilibrium and the intrinsic free energy 
functional we obtain 

-/~2---ln(Zv) = [Q(x ,  + ) + Q ( x , - ) ] d x  (A19) 
co 

and 

= + - u ( x ,  ; ( x ,  clx 

f + oC~ 
= - [Q(x ,  + ) + Q ( x ,  - ) ] l - l - n ~ ( x - a / 2 ) ]  dx 

--o0 

+ 2  p ( x , ~ ) l n { Q ( x + a , ~ ) / [ l + ) ~ _ Q ( x ,  + ) ] } d x  (A20) 
o- - - o 0  
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The corresponding Euler-Lagrange equation is 

w(x,  or) = exp [Q(y ,  + ) + Q(y ,  - )] dy 

x Q ( x + a ,  a)/[1 +2~o _ Q(x, + ) ]  (A21) 

Q(x,  a) as a function of o(x,  a) is obtained by solving Eqs. (A17). Simple 
algebra yields 

Q(x, + ) = l/(2Z)[({ 1 + 2[p(x, - ) - p(x  - a, + )3/[1 - n ~ ( x -  a/2)] }2 

+ 42p(x - a, + )/[ 1 - n~(x - a/2)])1/2 

- {1 + 2 [ - p ( x , - ) - p ( x - a ,  + ) ] / [ 1 - n ~ ( x - a / 2 ) ] } ]  (A22a) 

Q(x,  - ) = p (x  - a, - )/[1 - n~(x - a/2)] (aZ2b) 

The functional of the nonuniform fluid is now completely determined. 
However, all the preceding expressions look complicated and quite unsym- 
metrical. This is simply because Q(x,  cr) is not the good variable. As noted 
in the text, it is much more convenient to introduce the density of free 
monomers pl (x ,  a). Comparing (A22) with Eq. (2.25), we get the identifica- 
tion 

Q(x  + a, + ) = pl (x ,  + )/[1 - n~(x + a/2)] (A23a) 

Q ( x + a ,  - ) = p l ( x ,  - )  {1 + 2 p l ( x - a ,  + ) / [ 1 - n , ( x - a / 2 ) ] }  (A23b) 
[ 1 - n ~ ( x + a / 2 ) ]  

Now, replacing these expressions into (A20), we readily see that the 
functional can be written as Eq. (2.16) or better as Eqs. (3.1), which are 
much simpler and more elegant expressions. 

A P P E N D I X  B 

In this Appendix we compute the pair correlation function of the 
uniform fluid of dimerizing hard rods using Wertheim's theory. 

Since TPT1 is exact, we get from (3.6) and (3.7) 

C00(XI, X2) = cR(1, 2) + 62A1c(~ 6p(2) 

= cR(xl,  x2) + ;~ f pl(X, + ) 

x 6 2 g R ( x , x + a ) / f p ( x l ) f p ( x z ) p ~ ( x + a , - ) d x  (B1) 
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where gR(x ,  x +  a) is given by (3.8) and cR(x l ,  X 2 )  is the direct correlat ion 
function of the hard- rod  fluid. (2) In the limit of the uniform fluid we find 

62A1c(~ 6p(2) = (1/2) 2p12/(1 - pa)  3 (a - [x[) e ( a - ] x [ )  (B2) 

so that  

Coo(X) = { - 1/(1 - pa)  § [ (1 /2)  ,~p~/(1 - pa)  - p ]  

x Ca-Ixl ) / (1  - p a )  2} ~ ( a - I x l )  (B3) 

and finally 

Coo(k ) = - 2 1 1 / ( 1  - pa)(sin k a ) / k  + Fpl / (1  - pa)  2] (1 - cos k a ) / k  2] (B4) 

where we have used (2.9) to eliminate ,,t. and int roduced the Fourier trans- 
form Coo(k) = ~ eikXCoo(X) dx. 

Similarly, after some simple calculations we find 

Col ( k [ ~r 2 = +)  = C xo( k ] or1 = - )  = (1/2) 2pl/(1 - pa ) 2 (1 - e -  ~k")/ik 

col(k [ (r2 -- - )  = C,o(k ] o1 ~--" §  = (1/2) 2pl /(1 - pa)  2 (eik" - 1)/ik 

c11(k [ §  § ) = C, l (k  I - ,  - )  = 0 (B5) 

c11(kl §  - ) = V ( 1 - p a ) e  ika 

c 1 1 ( k l - ,  + ) = 2 / ( 1 - p a ) e  ika 

As noted by Wertheim, (9) the Ornstein-Zernike equat ion can be integrated 
over the orientat ions when the pair potential  in the reference system is 
spherically symmetric. The form of the equat ion remains unchanged, except 
for the replacement of h and c by their angular averages (here the sum is 
over spin states) 

Po ~ f i i j  = (1/4) ~ Pi j (a l ,  a2) (B6) 
O" 10" 2 

with p standing for either c or h. Therefore  we introduce the functions 

Coo(k) = Coo(k) 

gol(k) = gl0(k) = (1/2) ~ Co,(k [ a2) = (p - p l ) / [ p l ( 1  - pa) ]  (sin k a ) / k  
a l  

c11(k) = (1/4) ~ c11(k I a l ,  or2) = (p - p , ) / p2  cos ka  (B7) 
O" 1 O" 2 

where again (2.9) has been used to eliminate 2. 
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The  O Z  e q u a t i o n  decouples  in to  two m a t r i x  e q u a t i o n s  of o rde r  two 
which  can  be easily solved to yield 

[Zoo = ~oo/D 

/Jo, = / l l o  = [(1 -- p l c l o )  Col + p,?oo6H]/D (B8) 

]711 = [pC2o + ( I  -- PC00) C l I ] / D  

where  

D =  ( 1 - p 6 o o - P l ? o l ) ( 1 - p ~ ? a o ) - P , { o o ( P 6 1 o + P ~ ? ~ l )  (B9) 

G r o u p i n g  a n d  ca lcu la t ing  all the te rms  as ind ica ted  by  (3.18), we f inal ly 
o b t a i n  the fo l lowing  resul t  for the pai r  co r re l a t ion  func t i on  h(k):  

p2/~(k) = p2/~oo(k) + 2ppl h,o(k) + p21[z~(k) 

= p [ 1  - D ( k )  + (1 - p a / p )  cos ka] /D(k )  (B10) 

wi th  

D(k)  = 1 + [2pa / (1  - pa)]  [ ( s in  ka) /k  + [ p l / ( 1  - p a ) ] ( 1  - cos ka) /k  2] 

+ [ (p  - p~)/(1 - pa)]  [ ( s in  2ka)/k  

+ ( 1 / 2 ) [ ( p  + p , ) / (1  - p a ) ] ( 1  - cos 2ka)/k  2] (B1 1) 

A C K N O W L E D G M E N T S  

T h e  a u t h o r s  wish to t h a n k  G.  T a r j u s  for useful discussions.  
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